2017年5月5日 星期五

Blocks 初探與 multithreading 應用

近日由於個人一項工作的緣故, 為了能在短時間內能夠加速複雜程式的運作
因此現學現賣地採用了 OpenMP 做快速的優化實作, 最後得到 3倍左右的加速

儘管 OpenMP 表現不俗, 然而在 Android 上的實作必須仰賴已經被 deprecated 的 GCC
讓現今預設使用 clang 的環境必須特別撰寫 makefile
而儘管亦能夠使用先前撰文介紹的 Grand Central Dispatch 作為方案
然而一方面 libdispatch 的 Android port 已經過舊
而官方版必須限定 Android API-level 21 外 (另外現在編譯也有問題)
另一個問題是 GCD 的實作規模不可以說小

由於 Blocks 的使用其簡潔與動態的特性對於個人而言是充滿魅力的
基於如此的動機便開始構思結合 thread pool 與 Blocks 的方式
以此來簡化 multi-threading 程式的撰寫, 並且得到能夠有效修改的實作
為此目的必須先去了解 Blocks 是如何運作的
儘管 clang 提供了 "Language Specification for Blocks" 的頁面
然而個人認為 Apple 的 Blocks Programming - Introduction 撰寫的比較淺顯易懂

基本上 Blocks 提供了將 C/C++ 的大括號內的 code 區塊轉化作為類似下列型別作為"變數"的能力
void (*func)(void);
而 Blocks 中最有趣以及最為實用的功能是對於使用 global/local variable 上數值的"擷取"
以 local variable 為例, 一般的 serial code 毫無疑問會在 stack memory 中
若使用了 Blocks 並於 Blocks 中使用了該 Block 區間外的 global/local variable
這時的流程會產生了類似 process fork 的分歧, 理解上應為未明確寫出的 call by value
Blocks 中對於外部的 global/local variable 本身的修改是不具有寫回的效果
除此之外型別為 Blocks 的變數在使用上的概念其實與一般變數無異
程式撰寫的過程中同樣地必須考量與處理 variable lifetime 的問題
這時就必須藉由使用 Block_copy/Block_release 來手動複製與釋放 Blocks 所含的內容
對於程式中 local/global variable 處理概念上的不同是 OpenMP 與 Blocks 最大差異
而兩者所使用的方式, 在應用上來說真的是各有優缺

透過閱讀上述的參考資料建立概念後
接著就動手來做類似於 GCD 的 Blocks dispatching 的功能

首先是建立等同於 GCD 中使用來作為 task dispatch 的 dispatch_block_t 的型別
接著就是增加 thread pool 的 dispatch function
基本上是將原本的介面的參數自 function pointer 與型別為 (void *) 的 argument
改為直接使用 Block 型別
可不用再撰寫型別為 void* func(void*) 的 pthread glue code 的好處不用再多說了

在建立概念之後, 動手實作上就簡單多了
為了快速而採用了現成的 thread pool 實作 - C-Thread-Pool
而 Blocks 的操作是基於 BlocksRuntime (提供了 Block_copy / Block_release)
而初步的成果我暫且名為 gunshot
請 git clone 後記得 git submodule init/update

修改的 example.c 中, 嘗試比較填入一個 buffer 數值
    for(int pidx = 0; pidx < TEST_DEPTH; pidx++){
        int *plane = buf0 + pidx*TEST_W*TEST_H;
        for(int yidx = 0; yidx < TEST_H; yidx++){
            for(int xidx = 0; xidx < TEST_W; xidx++){
                plane[yidx*TEST_W + xidx] = pidx*4096 + (yidx + xidx);
            }
        }
    }
而 thread pool + Blocks 的版本可以寫為
    for(int pidx = 0; pidx < TEST_DEPTH; pidx++){
        int *plane = buf1 + pidx*TEST_W*TEST_H;
        thpool_add_block(thpool, ^{
            for(int yidx = 0; yidx < TEST_H; yidx++){
                for(int xidx = 0; xidx < TEST_W; xidx++){
                    plane[yidx*TEST_W + xidx] = pidx*4096 + (yidx + xidx);
                }
            }
        });
    }

在個人使用的 Quad-Core A8-5545M 平台得到了以下結果
single thread - 34832 us
4 threads - 13129 us

得到了 2.65 倍的加速

沒有留言:

Android 軟體架構轉變的進行式

今日在 Google 的 Android Developer Blog 上貼出了篇名為的 "Here comes Treble: A modular base for Android" 貼文, 這是一件對於 Android 生態系統的大事, 也是 Googl...